Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.

For the best experience please use the latest Chrome, Safari or Firefox browser.

$$ \definecolor{desyOrange}{RGB}{242,142,0} \DeclareMathOperator{\Arcsinh}{arcsinh} \DeclareMathOperator{\Arctan}{arctan} \DeclareMathOperator{\arcosh}{arcosh} \newcommand\dd{{\mathrm d}} \newcommand{\bb}{{\mathbf b}} \newcommand{\bk}{{\mathbf k}} \newcommand{\bl}{{\mathbf l}} \newcommand{\bm}{{\mathbf m}} \newcommand{\bn}{{\mathbf n}} \newcommand{\bp}{{\mathbf p}} \newcommand{\bq}{{\mathbf q}} \newcommand{\br}{{\mathbf r}} \newcommand{\bw}{{\mathbf w}} \newcommand{\bx}{{\mathbf x}} \newcommand{\by}{{\mathbf y}} \newcommand{\bz}{{\mathbf z}} \newcommand{\bc}{{\mathbf c}} \newcommand{\bell}{\boldsymbol{\ell}} \newcommand\cO{\mathcal{O}} \newcommand{\cD}{\mathcal{D}} \newcommand\cA{\mathcal{A}} \newcommand\cM{\mathcal{M}} \newcommand\cN{\mathcal{N}} \newcommand\cE{\mathcal{E}} \newcommand\cS{\mathcal{S}} \newcommand\cP{\mathcal{P}} \newcommand\cF{\mathcal{F}} \newcommand\cL{\mathcal{L}} \newcommand\cI{\mathcal{I}} \newcommand\cH{\mathcal{H}} \newcommand\cU{\mathcal{U}} \newcommand\Mp{M_{\rm Pl}} $$

Challenges in the Post-Minkowskian Description of the Gravitational Two-Body Problem

Work with Christoph Dlapa, Zhengwen Liu,
Jakob Neef & Rafael Porto

[2207.00580]
[2210.05541]
[2304.01275]

scattering orbit

Gregor Kälin

erc desy eu
Nordita 24.07.2023

I would like to mention astrophysics; in this field, the strange properties of the pulsars and quasars, and perhaps also the gravitational waves, can be considered as a challenge. - Werner Heissenberg

Overview

scattering

Challenge 1: Integrand construction

  • Efficiently and systematically computable.
  • Minimal
    • Free of redundancies.
    • Only information that we want.
  • Optimal representation.

A worldline EFT framework

[GK, Porto 2006.01184]

setup

Full theory

Model the compact bodies by worldlines \(x_a^\mu(\tau)\) coupled to GR. $$\begin{align} S_{\rm EH} &= -2\Mp^2 \int \dd^4x \sqrt{-g} \, R[g]\\ S_{\rm pp} &= -\sum_a \frac{m_a}{2} \int \dd\tau_a\, g_{\mu\nu}(x_{a}(\tau_a)) \dot{x}_{a}^\mu(\tau_a) \dot{x}_{a}^\nu (\tau_a)+\dots\\ \end{align}$$ We can add more terms to describe tidal and spin effects in an EFT style.

Effective two-body action

First step: Integrate out the gravitational field (classical saddlepoint). $$g_{\mu\nu}=\eta_{\mu\nu} + \kappa h_{\mu\nu}$$ $$e^{i S_{\rm eff}[x_a] } = \int \cD h_{\mu\nu} \, e^{i S_{\rm EH}[h] + i S_{\rm GF}[h] + i S_{\rm TD}[h] + i S_{\rm pp}[x_a,h]}$$

Don't use Feynman rules!
- An amplitudist

Optimize the EH-Lagrangian by means of gauge-fixing terms and total derivatives:

  • 2-point Lagrangian: 2 terms
  • 3-point Lagrangian: 6 terms
  • 4-point Lagrangian: 18 terms
  • 5-point Lagrangian: 36 terms
notBad

Radiation reaction

[GK, Neef, Porto 2207.00580]

Computing observables

Second step: Solve equation of motions $$\left.\frac{\delta \cS_{\textrm{eff}}[x_+,x_-]}{\delta x_{b,-}^\mu(\tau)}\right|_{\substack{x_{a,-}\rightarrow 0\\x_{a,+}\rightarrow x_a}} = 0 \quad\Longleftrightarrow\quad m_b \ddot{x}_b^\mu(\tau) = \left.-\eta^{\mu\nu}\frac{\delta \cS_{\textrm{eff,int}}[x_+,x_-]}{\delta x_{b,-}^\nu(\tau)}\right|_{\substack{x_{a,-}\rightarrow 0\\x_{a,+}\rightarrow x_a}}$$ perturbatively, expanding around straight lines $$ x_a^\mu(\tau) = b_a + u_a \tau + \sum_{n=1}^\infty G^n \delta^{(n)}x_a^\mu(\tau) $$ Using above trajectories we can e.g. compute the impulse $$\Delta p^\mu_1= m_1 \int_{-\infty}^{+\infty}\dd\tau \ddot{x}_1^\mu = - \eta^{\mu\nu}\int_{-\infty}^{+\infty} \dd\tau \left.\frac{\delta \cS_{\textrm{eff,int}}[x_-,x_+]}{\delta x_{1,-}^\nu(\tau)}\right|_{\substack{x_{a,-}\rightarrow 0\\x_{a,+}\rightarrow x_a}}\,,$$ or the change of the mechanical angular momentum $$\Delta J^{\mu\nu}_1 = m_1 \int_{-\infty}^{+\infty} \dd\tau ( x_1^\mu \ddot{x}_1^\nu- \ddot{x}_1^\mu x_1^\nu)\,.$$

Challenge 1: Integrand construction

  • Efficiently and systematically computable. Yes.
  • Minimal
    • Free of redundancies. Iterations, on-shellness,...
    • Only information that we want. Yes.
  • Optimal representation. Probably no.

Challenge 2: (Feynman) Integrals

  • Analytic representation.
  • vs. fast numerical evaluation.
  • Minimal function space.
  • Bootstrap.

Integration

Generic structure to any loop order (potential + radiation): $$ \int \dd^Dq\frac{\delta(q\cdot u_1)\delta(q\cdot u_2)e^{i b\cdot q}}{(q^2)^m} \underbrace{\int \dd^D\ell_1\cdots\dd^D\ell_L\frac{\delta(\ell_1\cdot u_{a_1})\cdots\delta(\ell_L\cdot u_{a_L})}{(\ell_1\cdot u_{b_1}\pm i0)^{i_1}\cdots(\ell_L\cdot u_{b_L}\pm i0)^{i_L}(\textrm{sq. props})}}_{\textrm{Cut Feynman integrals with linear and square propagators}} $$

Integration procedure

Method of regions @3PM

$$I_1=\int_{\ell_1,\ell_2}\frac{\delta(\ell_1\cdot u_1)\delta(\ell_2\cdot u_2)}{\ell_1^2\ell_2^2(\ell_1+\ell_2-q)^2}$$


Shift \(k\equiv \ell_1+\ell_2-q\) and \(\ell\equiv\ell_2\) $$\begin{align} &\mathrm{potential:} & \ell&\sim (v_\infty,1)|{\bq}|\,, & k&\sim(v_\infty,1)|{\bq}|\,,\\ &\mathrm{radiation:} & \ell&\sim (v_\infty,1)|{\bq}|\,, & k&\sim(v_\infty,v_\infty)|{\bq}|\,. \end{align}$$ Choose a frame \(u_1=(1,0,0,0)\,, u_2=(\gamma, 0,0,v_\infty)\), effectively: $$\begin{align} &\mathrm{potential:} \quad (\bell\to \bell, \bk\to \bk)\,,\\ &\mathrm{radiation:} \quad (\bell\to \bell, \bk\to v_\infty \tilde\bk)\,,\quad \tilde\bk\sim \bq\,,\label{res3pm} \end{align}$$ Leading to $$\begin{align} I_{1}^\mathrm{pot} &= -\int_{\bell,\bk} \frac{1}{[(\bk-\bell+\bq)^2]\, [\bell^2]\, [\bk^2]} + \cO(v_\infty^2)\,, \\ I_{1}^\mathrm{rad} &= - \int_{\bell} \frac{1}{ [(\bell - \bq)^2]\,[\bell^2] }\, \int_{\tilde \bk} \frac{v_\infty^{d-2} }{ [\tilde\bk^2 - (\ell^z)^2] } +\cO(v_\infty^{d})\,, \end{align}$$


Feynman vs. causal $$\begin{align} I_{1,\rm Fey}^\mathrm{rad} &= - \int_{\bell} {1 \over [(\bell - \bq)^2]\,[\bell^2] }\, \int_{\bk} {v_\infty^{d-2} \over [\bk^2 - (\ell^z)^2 - i0] } +\cO(v_\infty^{d})\,, \\[0.35 em] I_{1,\rm ret}^\mathrm{rad} &= - \int_{\bell} {1 \over [(\bell - \bq)^2]\,[\bell^2] }\, \int_{\bk} {v_\infty^{d-2} \over [\bk^2 - (\ell^z + i0)^2] } +\cO(v_\infty^{d})\,. \end{align}$$

Method of regions @4PM

[Dlapa et al. 2304.01275]

$$I_2= \int_{\ell_1,\ell_2,\ell_3} \frac{ \delta (\ell_1\!\cdot\! u_1)\, \delta (\ell_2\!\cdot\! u_1)\, \delta(\ell_3\!\cdot\! u_2)} {\ell_1^2\,\ell_3^2\,(\ell_2 {-}q)^2\, (\ell_3 {-} q)^2\, (\ell_1 {-} \ell_2)^2\, (\ell_2 {-} \ell_3)^2\, (\ell_3{-}\ell_1)^2}$$ Relabel \(k_1=\ell_3-\ell_1\), \(k_2=\ell_2-\ell_3\), \(\ell = \ell_3\). Regions: $$\begin{align} &\mathrm{pot:} & k_1&\sim(v_\infty,1)|\bq|\,, & k_2&\sim(v_\infty,1)|\bq|\,, & \ell&\sim(v_\infty,1)|\bq|\,,\\ &\mathrm{1rad}^{(1)}: & k_1&\sim(v_\infty,v_\infty)|\bq|\,, & k_2&\sim(v_\infty,1)|\bq|\,, & \ell&\sim(v_\infty,1)|\bq|\,,\\ &\mathrm{1rad}^{(2)}: & k_1&\sim(v_\infty,1)|\bq|\,, & k_2&\sim(v_\infty,v_\infty)|\bq|\,, & \ell&\sim(v_\infty,1)|\bq|\,,\\ &\mathrm{2rad:} & k_1&\sim(v_\infty,v_\infty)|\bq|\,, & k_2&\sim(v_\infty,v_\infty)|\bq|\,, & \ell&\sim(v_\infty,1)|\bq|\,, \end{align}$$


Expand in these regions $$\begin{align} I_{2}^\textrm{pot} &= \int_{\bell,\bk_1,\bk_2} {1 \over [(\bell-\bk_1)^2]\, [\bell^2]\, [(\bk_2+\bell-\bq)^2]\, [(\bell-\bq)^2]\, [(\bk_1+\bk_2)^2]\, [\bk_2^2]\, [\bk_1^2]} +\cO(v_\infty^2)\,, \\ %% I_{2}^{\textrm{1rad}(1)} &= \int_{\bell,\bk_2} {1 \over [\bell^2]\, [\bell^2]\, [(\bk_2+\bell-\bq)^2]\, [(\bell-\bq)^2]\, [\bk_2^2]^2} \int_{\bk_1} {v_\infty^{d-2} \over \bk_1^2 - (\ell^z)^2} +\cO(v_\infty^{d})\,, \\ %% I_{2}^{\textrm{1rad}(2)} &= \int_{\bell,\bk_1} {1 \over [(\bell-\bk)^2]\, [\bell^2]\, [(\bell-\bq)^2]\, [(\bell-\bq)^2]\, [\bk_1^2]^2} \int_{\bk_2} {v_\infty^{d-2} \over \bk_2^2 - (\ell^z)^2} +\cO(v_\infty^{d})\,, \\ %% I_{2}^\textrm{2rad} &= \int_\bell {1 \over [\bell^2] \,[\bell^2]\, [(\bell-\bq)^2]^2} \int_{\bk_1,\bk_2} {v_\infty^{2d-6} \over [(\bk_1+\bk_2)^2]\, [\bk_2^2 - (\ell^z)^2]\, [\bk_1^2 - (\ell^z)^2]} +\cO(v_\infty^{2d-4})\,. \end{align}$$

Results up to 4PM

[Dlapa, GK, Liu, Neef, Porto 2210.05541]
$$\Delta^{(n)} p_1^\mu =c^{(n)}_{1b}\, \hat b^\mu + \sum_{a} c^{(n)}_{1\check{u}_a}\, \check{u}_a^\mu$$ res12PM
res3PM
res4PM

Challenge 2: (Feynman) Integrals

  • Analytic representation. New challenge at every loop order!
  • vs. fast numerical evaluation. Worth thinking about.
  • Minimal function space. Not very relevant (until now).
  • Bootstrap. Be creative

Challenge 3: Bound orbits and resummations.

  • Completing the boundary-to-bound dictionary.
  • Performing and understanding resummations.
  • Apply amplitudes methods directly to bound problem.

Boundary-To-Bound (B2B)

[1911.09130, w/ Porto] [1910.03008, w/ Porto] Use scattering data, e.g. the scattering angle $$\chi(b,E) +\pi = 2b \int_{r_{\rm min}}^\infty \frac{\dd r}{r\sqrt{r^2\bar\bp^2(r,E)-b^2}}$$ to obain bound observables, e.g. the periastron advance: $$\begin{align} \Delta \Phi + 2\pi = 2J \int_{r_-=r_{\rm min}(J)}^{r_+=r_{\rm min}(-J)} \frac{\dd r}{r\sqrt{r^2\bp^2(r,E)-J^2}} &=2J \int_{r_\textrm{min}(J)}^{\infty} \frac{\dd r}{r\sqrt{r^2\bp^2(r,E)-J^2}}\\ &\quad-2J \int_{r_\textrm{min}(-J)}^{\infty} \frac{\dd r}{r\sqrt{r^2\bp^2(r,E)-J^2}}\\ &=\chi(J,E)+\chi(-J,E)+2\pi \end{align}$$ Don't forget: \(J=p_\infty b\), \(\bar\bp = \bp/p_\infty\).

Local vs. non-local for circular orbits

[2106.08276] Non-local contributions to unbound radial action $$\cI_{r\textrm{(nloc)}}^{\textrm{4PM}}=-\frac{E}{2\pi M^2\nu}\left(\int \frac{\dd\omega}{2\pi}\frac{\dd E}{\dd\omega}\log(4\omega^2e^{2\gamma_E})+\int \dd t\frac{\dd E}{\dd t}\log(r^2(t))\right)$$ Not all terms go through above B2B dictionary.
Challenge:
Remove non-local terms from unbound quantities & evaluate them instead on bound orbits.

Radiation

[2112.03976, w/ Cho, Porto]

In a similar way we can analytically continue radiative observables, e.g. the energy and angular momentum loss $$\begin{align} \Delta E_\textrm{ell}(J,\cE) &= \Delta E_\textrm{hyp}(J,\cE)-\Delta E_\textrm{hyp}(-J,\cE)\\ \Delta J_\textrm{ell}(J,\cE) &= \Delta J_\textrm{hyp}(J,\cE)+\Delta J_\textrm{hyp}(-J,\cE)\\ \end{align}$$

Firsov's formula

[w/ Porto 1910.03008]
Let us invert $$\chi(b,E) = -\pi + 2b \int_{r_{\rm min}}^\infty \frac{\dd r}{r\sqrt{r^2\bar\bp^2(r,E)-b^2}} = \sum_{n=1} \chi^{(n)}_b(E) \left(\frac{GM}{b}\right)^n $$ [Firsov '53]: dependence on \(r_\textrm{min}\) drops out
$$\bar\bp^2(r,E) = \exp\left[ \frac{2}{\pi} \int_{r|\bar{\bp}(r,E)|}^\infty \frac{\chi(\tilde b,E)\dd\tilde b}{\sqrt{\tilde b^2-r^2\bar\bp^2(r,E)}}\right] = 1 + \sum_{n=1}^\infty f_n(E) \left(\frac{GM}{r}\right)^n$$
These integrals are easy to perform in a PM-expanded form and one finds: $$\chi_b^{(n)} = \frac{\sqrt{\pi}}{2} \Gamma\left(\frac{n+1}{2}\right)\sum_{\sigma\in\mathcal{P}(n)}\frac{1}{\Gamma\left(1+\frac{n}{2} -\Sigma^\ell\right)}\prod_{\ell} \frac{f_{\sigma_{\ell}}^{\sigma^{\ell}}}{\sigma^{\ell}!}$$ The inversion thereof also exists.

Firsov resummation

Resummation and comparison to NR [Damour, Rettegno 2211.01399]

Equal mass scattering.

Challenge 3: Bound orbits and resummations.

  • Completing the boundary-to-bound dictionary. Nonlocal. Spin. Waveform dictionary?
  • Performing and understanding resummations. Why so good? What about bound?
  • Apply amplitudes methods directly to bound problem. Challenge for all of you!

Conclusions

Time to face these challenges!

scattering

This research is supported by the ERC-CoG “Precision Gravity: From the LHC to LISA” provided by the European Research Council (ERC) under the European Union’s H2020 research and innovation programme (grant No. 817791), by the DFG under Germany’s Excellence Strategy ‘Quantum Universe’ (No. 390833306).

High Energy

  • High-energy + massless limit is divergent. Keeping \(s\equiv \gamma m_1 m_2\) fixed: $$\begin{align} c_{1b}^{(4)\mathrm{tot}} &\sim \frac{s^3}{m_1} + \cO(m_i)\\ \frac{\Delta E^{\mathrm{4PM}}_{\textrm{hyp}}}{\sqrt{s}} &\sim \frac{G^4 s^2}{b^4} \log\left(\frac{s}{m_1 m_2}\right)+\cO(m_i) \end{align}$$
  • PM to PN: The Magic of Firsov

    firsov Let's consider a simple example $${\Delta \Phi}(j,\cE)= \sum_{n=1} \Delta \Phi_j^{(2n)}(\cE)/j^{2n}$$ with \(j=J/(G M \mu)\). B2B states: $$\Delta \Phi_j^{(2n)}(\cE)= 4\, \chi^{(2n)}_j(\cE)$$ Let's assume we don't know anything about \(\chi^{(4)}_j\). Does this mean we don't know anything about \(\Delta \Phi_j^{(4)}\)? There's lot of lower PN information that our PM results up to \(\chi_j^{(3)}\) should contain. Where are they?

    Firsov's formula

    Let us invert $$\chi(b,E) = -\pi + 2b \int_{r_{\rm min}}^\infty \frac{\dd r}{r\sqrt{r^2\bar\bp^2(r,E)-b^2}} = \sum_{n=1} \chi^{(n)}_b(E) \left(\frac{GM}{b}\right)^n $$ [Firsov '53]: dependence on \(r_\textrm{min}\) drops out
    $$\bar\bp^2(r,E) = \exp\left[ \frac{2}{\pi} \int_{r|\bar{\bp}(r,E)|}^\infty \frac{\chi(\tilde b,E)\dd\tilde b}{\sqrt{\tilde b^2-r^2\bar\bp^2(r,E)}}\right] = 1 + \sum_{n=1}^\infty f_n(E) \left(\frac{GM}{r}\right)^n$$
    These integrals are easy to perform in a PM-expanded form and one finds: $$\chi_b^{(n)} = \frac{\sqrt{\pi}}{2} \Gamma\left(\frac{n+1}{2}\right)\sum_{\sigma\in\mathcal{P}(n)}\frac{1}{\Gamma\left(1+\frac{n}{2} -\Sigma^\ell\right)}\prod_{\ell} \frac{f_{\sigma_{\ell}}^{\sigma^{\ell}}}{\sigma^{\ell}!}$$ The inversion thereof also exists.

    Back to our problem

    $$\frac{1}{4}\Delta \Phi_j^{(4)}= \chi^{(4)}_j = \left(\frac{p_\infty}{\mu}\right)^4\chi_b^{(4)}=\left(\frac{p_\infty}{\mu}\right)^4\frac{3\pi}{16}(2f_1f_3+f_2^2+2f_4)$$ and in turn $$\begin{align} f_1&=2\chi_b^{(1)}\\ f_2&=\frac{4}{\pi}\chi_b^{(2)}\\ f_3&=\frac{1}{3}\left(\chi_b^{(1)}\right)^3+\frac{4}{\pi}\chi_b^{(1)}\chi_b^{(2)}+\chi_b^{(3)} \end{align}$$ Prefectly reproduces 1 and 2PN information at order \(j^{-4}\).

    Numerical integration using machine learning

    [Jinno, GK, Liu, Rubira 2209.01091]